Study of Double-Side Ultrasonic Embossing for Fabrication of Microstructures on Thermoplastic Polymer Substrates

نویسندگان

  • Yi Luo
  • Xu Yan
  • Na Qi
  • Xiaodong Wang
  • Liangjiang Wang
چکیده

Double-side replication of polymer substrates is beneficial to the design and the fabrication of 3-demensional devices. The ultrasonic embossing method is a promising, high efficiency and low cost replication method for thermoplastic substrates. It is convenient to apply silicon molds in ultrasonic embossing, because microstructures can be easily fabricated on silicon wafers with etching techniques. To reduce the risk of damaging to silicon molds and to improve the replication uniformity on both sides of the polymer substrates, thermal assisted ultrasonic embossing method was proposed and tested. The processing parameters for the replication of polymethyl methacrylate (PMMA), including ultrasonic amplitude, ultrasonic force, ultrasonic time, and thermal assisted temperature were studied using orthogonal array experiments. The influences of the substrate thickness, pattern style and density were also investigated. The experiment results show that the principal parameters for the upper and lower surface replication are ultrasonic amplitude and thermal assisted temperature, respectively. As to the replication uniformity on both sides, the ultrasonic force has the maximal influence. Using the optimized parameters, the replication rate reached 97.5% on both sides of the PMMA substrate, and the cycle time was less than 50 s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasonic Hot Embossing

Ultrasonic hot embossing is a new process for fast and low-cost production of micro systems from polymer. Investment costs are on the order of 20.000 € and cycle times are a few seconds. Microstructures are fabricated on polymer foils and can be combined to three-dimensional systems by ultrasonic welding.

متن کامل

Fabrication of Polymer Electronic Boards by Ultrasonic Embossing and Welding

A method has been developed allowing fabrication of electronic boards from flexible polymer film by ultrasonic embossing and welding within seconds. A commercially available ultrasonic welding machine and micro patterned tools from aluminum are employed first to generate conductor paths on a flexible polymer film, in a further step, surface mounted devices (SMDs) are assembled and fixed on the ...

متن کامل

Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.

A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by a...

متن کامل

Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing.

We report a cost-efficient and easy to implement process for fabricating microfluidic reactors in thermoplastic materials. The method includes (i) the fabrication of an imprint template (master), which consists of a photoresist deposited on a metal plate; (ii) the thermoembossing of the reactor features into polymer sheets; (iii) the activation of the embossed and planar thermoplastic surfaces;...

متن کامل

Microstructure formation via roll-to-roll UV embossing using a flexible mould made from a laminated polymer–copper film

Roll-to-roll large format UV embossing processes aim to revolutionize the manufacturing of functional films, with the ability to process a large area at one time, resulting in high throughput and cost reduction. In this paper, we present the experimental results obtained during the process development for roll-to-roll large format UV embossing. Flexible moulds were fabricated from a hybrid film...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013